Noncommutative Parameters of Quantum Symmetries and Star Products

نویسنده

  • P. Maślanka
چکیده

The star product technique translates the framework of local fields on noncommutative space–time into nonlocal fields on standard space– time. We consider the example of fields on κ– deformed Minkowski space, transforming under κ–deformed Poincaré group with noncommutative parameters. By extending the star product to the tensor product of functions on κ–deformed Minkowski space and κ-deformed Poincaré group we represent the algebra of noncommutative parameters of deformed relativistic symmetries by functions on classical Poincaré group.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommutative Parameters of Quantum Symmetries and Star Products

The star product technique translates the framework of local fields on noncommutative space–time into nonlocal fields on standard space– time. We consider the example of fields on κ– deformed Minkowski space, transforming under κ–deformed Poincaré group with noncommutative parameters. By extending the star product to the tensor

متن کامل

Quantum Fields on the Groenewold - Moyal Plane 1

We give an introductory review of quantum physics on the noncommutative space-time called the Groenewold-Moyal plane. Basic ideas like star products, twisted statistics , second quantized fields and discrete symmetries are discussed. We also outline some of the recent developments in these fields and mention where one can search for experimental signals.

متن کامل

Anticommutators and propagators of Moyal star-products for Dirac field on noncommutative spacetime

We study the Moyal anticommutators and their expectation values between vacuum states and non-vacuum states for Dirac fields on noncommutative spacetime. Then we construct the propagators of Moyal star-products for Dirac fields on noncommutative spacetime. We find that the propagators of Moyal star-products for Dirac fields are equal to the propagators of Dirac fields on ordinary commutative sp...

متن کامل

Stability of additive functional equation on discrete quantum semigroups

We construct  a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...

متن کامل

Commutators and propagators of Moyal star-products and microscopic causality for noncommutative scalar field theory

We study the Moyal commutators and their expectation values between vacuum states and non-vacuum states for noncommutative scalar field theory. Then from the Moyal commutators, we demonstrate that the microscopic causality is satisfied for scalar fields on noncommutative spacetime. We construct the Feynman propagator of Moyal star-product for noncommutative scalar field theory. PACS numbers: 11...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008